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Abstract: Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two 

counter propagating surface capillary gravity wave packets in deep water in the presence of wind flowing bover 

water. On the basis of these evolution equations stability analysis is made for a uniform standing surface capillary 

gravity wave trains for longitudinal perturbation. Instability condition is obtained and graphs are plotted for 

maximum growth rate of instability and for wave number at marginal stability against wave steepness for some 

different values of dimensionless wind velocity. Significant deviations are noticed from the results obtained from 

third order nonlinear evolution equations. 
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I.     INTRODUCTION 

There has been considerable interest in the stability of finite amplitude surface  gravity wave in deep water.Much of this 

interest has been focused on the instability of   a uniform wave train to modulational perturbations.For small but finite 

amplitude, one successful approach to studying the stability of finite amplitude surface gravity waves in deep water is 

through the application of the lowest order nonlinear evolution equation,which is the nonlinear Schrodinger equation.This 

analysis is suitable for small wave steepness and for long-wavelength perturbations.But for wave steepness greater than 

0.15 predictions from the nonlinear Schrodinger equation do not agree with the result of Longuet-Higgins[12,13]. 

Dysthe[3] has shown that astability analysis made from a fourth-order nonlinear evolution equation that is one order 

higher than the nonlinear Schrodinger equation gives results consistent with the exact results of Longuet-Higgins[12,13] 

and with the experimental results of Benjamin and Feir[1] for wave steepness up to 0.25.The fourth-order effects give a 

surprising improvement compared to ordinary nonlinear Schrodinger effects in many respects,and some of these points 

have been elaborated by Janssen [9].The dominant new effect that comes in the fourth order is the influence of wave-

induced mean flow and this produces a significant deviation in the stability character. From these it can be concluded that 

a fourth-order evolution equation is a good starting point for studying nonlinear effects in surface waves. Fourth order 

nonlinear evolution equation for deep water surface waves in different contexts and stability analysis made from them 

were derived by Dhar and Das[4,5,6]. Debsarma and Das [7],Hara and Mei[10,11],Bhattacharyya and Das[2]. 

II.     BASIC EQUATIONS 

The common horizontal interface between water and air in the undisturbed state as z=0 plane.In the undisturbed state air 

flows over water with a velocity u in a direction that is taken as the x- axis. We take ( , , )z x y t   as the equation of the 

common interface is at any time t in the perturbed state. We introduce the dimensional quantities , , , ( , , ), , ,x y t t v    and 
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s which are respectively, the perturbed velocity potential in water, perturbed velocity potential in air, surface elevation of 

the water-air interface, space coordinates, time, air flow velocity, the ratio of the densities of air to water and surface 

tension.     

These dimensionless quantities are related to the corresponding dimensional quantities by the following relations 
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 where 0k  is some characteristic wave number, g  is the acceleration due to gravity,   and   are the densities of water 

and air respectively and T  is the dimension surface tension. 

       In the future, all the quantities will be written in their dimensionless form with their over ( ~ ) dropped. 

     The perturbed velocity potentials   and  satisfy the following Laplace equations 

      
2 0             in      z                                                                                                   (2) 

       
2 0             in       z                                                                                                  (3) 

   The kinematic boundary conditions to be satisfied at the interface are the following 
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     The condition of continuity of pressure at the interface  gives 
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                                                                                                              when    z                           (6) 

Also     and  should satisfy the following conditions at infinity 

         0
z





           when        z                                                                                               (7) 

        0
z





          when         z                                                                                                  (8)  

We look for solutions of the above equations (2) and (8)in the following form 
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where     1 1 1 1,k x t k x t           and   G  stands for    ,     .  In the above  summation on the right 

hand side of equation (9),  ( , ) (0,0)m n  .  The Fourier coefficients 
* *

00, 00, , , ,mn mn mn mn        are functions of 

1 1, ,z x x t t    and 
*

00, , ,mn mn    are functions of 1 1 1,x y t .    is a small ordering  parameter measuring the 

weakness of wave steepness  which is the product of wave amplitude and wave number and  * denotes complex 

conjugate. 

   The linear dispersion relation for gravity waves 

2 2 2(1 ) 2 (1 ) 0k v k v s                                                                                                   (10) 

which gives the following two values of                     
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that corresponds  to two modes and we designate this two modes as positive and negative modes. The positive mode 

moves in the positive direction of the x -axis with a frequency    2 21 1 / 1v v s          
 

, while the 

negative mode moves in the negative direction of the x -axis with a frequency    

   2 21 1 / 1v s v          
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. If v  is replace by v  the frequency of the   positive mode 

becomes equal to the frequency of the negative mode. So the results for the negative mode can be obtained from those for 

the positive mode by replacing v  by v . Therefore we have made a nonlinear analysis for the positive mode, and then 

we have obtained the results for the negative mode by replacing v  by v . 

  For linear stability  should satisfy the following condition 

                                                                                                    12) 

So our present analysis will remain valid as long as the dimensionless flow velocity of the air becomes less than the 

critical velocity .  For air flowing over water   = 0.00129 and  this critical value 

becomes 28.87, s=0.075. 

III.     DERIVATION OF EVOLUTION EQUATIONS 

Substituting  expansions (9) in equations (2),(3),(7),(8) and then equating the coefficients of 1 2exp ( )i m n   for 

(m,n)=[(1,0),(0,1),(2,0),(0,2),(1,1),(-1,1)] 

 we obtain the following equations: 
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where mn  is the operator given by 
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The solutions of equations(13) and(14) satisfying boundary  conditions (15)and(16) respectively are given by 

exp( )mn mn mnz A  
                                                                                                                (18) 

exp( )mn mn mnz A                                                                                                                   (19) 

in which ,mn mnA A are functions of 1 1,x y and 1t . For the sake of convenience we take the Fourier transformation of 

equations (2),(3),(7) and (8) for (m,n)=(0,0). The solutions of these transformed 

equations becomes  

00 00exp(| | )k z A                                                                                                                     (20) 

00 00exp(| | )k z A                                                                                                                      (21) 

where 00  and 00  are Fourier transforms of 00  and 00  respectively, defined by 
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where 
2 2 2( ),x yk k k 

00A  and 
00A  are functions of xk  and yk  and  . 

Again  substituting expansions (9) in the Taylor expanded forms of  equations (4)-(6) about z=0 and then equating the 

coefficients of  1 2exp ( )i m n   for (m,n)=[(1,0),(0,1),(2,0),(0,2),(1,1),(-1,1),(0,0)] on both sides , we get the 

following equations 

( )
0 1

mn i m n i pmn mnz tz


  

    
  

    

 
   

 
                                                                        (23) 

( ) ( )
0 1 1

mn i m n i iv m n i qmn mn mnz t xz


     

        
    

        

  
      

  
              (24)

     ( ) ( ) 10 0
1 1

i m n i i m n imn mn mnz zt t
        

      
   
      

 
         

 

 ( ) 0
1

s i v m n i rmn mn mn mnzx
    

  
 
  


     

                                                          (25)                                           



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 3, Issue 1, pp: (62-70), Month: April 2015 - September 2015, Available at: www.researchpublish.com 

 

Page | 66 
Research Publish Journals 

 

where   0z implies the value of the quantity inside brackets at z=0 and , ,p q rmn mn mn  are contributions from 

nonlinear terms. Now for the above seven values of (m,n), we obtain seven sets of equations,in which we substitute the 

solutions for ,mn mn   given by (18)-(21).     We now considering the following perturbation expansions for the 

solutions of above three sets of equations 

1

i iP Pmn mn
i




 


  for (m,n)=[(1,0),(0,1)] ; 

1

i iP Pmn mn
i




 


 for (m,n)=[(2,0),(0,2),(1,1),(-1,1),(0,0)]  

                                                                                                                                                              (26)                                                                                                                                          

where mnP  stands for ,A Amn mn  and mn  .  

  Substituting expansions (26) in the above three sets of equations and then equating coefficients of various powers of 
on both sides,we obtain a sequence of equations. From the first order (i.e lowest order) and second order equations 

corresponding to (23) and (24) of the first set of equations we obtain solutionsfor ,A Amn mn  and mn  ;  (m,n)= 

)=[(1,0),(0,1), (2,0),(0,2),(1,1),(-1,1),(0,0)].We now take the following transformations, following Pierce and 

Knobloch[14]of all perturbed quantities in slow spacecoordinates and time given by 

2

1 1 1 1 1 2 1, , ,g gx c t x c t y t            where )
1

(g

dw
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k

c


 is the group velocity. As we are going to 

derive evolution equation correct up to 
4( )O  which is one order higher than the evolution equation in the lowest order, 

we have introduced one more slow time variable 2  following Weissman [15] and we get the fourth order evolution 

equation for 10 : 
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Again we  get the fourth order evolution equation for 01 : 
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where                                                                                                                                                    (28) 
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If we put 0, 0, 0v     in equation (27) and (28) then we get  nonlocal mean field evolution equations in the third 

order for infinite depth water. These reduce equations becomes the same as equations(1b) of  Pierce and Knobloch[14] 

when we proceed to the limit as h  . 

IV.     STABILITY OF FINITE AMPLITUDE WAVE TRAINS 

The uniform wave train solutions of equations (27 ) and (28) are given by 

(0) (0)

10 10 0 01 01 0exp( ), exp( ),i i                                                                           (29) 

where 0  is real constant and the nonlinear frequency shift   is given by    

2

1 2 0( )                                                                                                                                    (30) 

Finally we obtain the following nonlinear dispersion relation 
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Solving  for  
2 2 /

1 0 1
     , the maximum growth rate of instability mI  is given by 

3
2 1 0

1 0

1 1

2
| |

| |
mI

 
 

 
                                                                                                                        (33) 

and  at marginal stability           
1 0

1 1

2

| |

 


 
                                                                                     (34) 

In Figures 1 and 2 the maximum growth rate  mI  of instability which can be obtained from equation (33) has been plotted 

against wave steepness 0 for some different values of dimensionless wind velocity v and for s=0.075.From the above 

graphs it is found that in the fourth order analysis for waves with sufficiently small wave numbers the maximum growth 

rate of instability mI first increases with the increase of wave steepness 0  and then it decreases with the increase of 0

and finally vanishes at some critical value of wave steepness 0 beyond which there is no instability, while in the third 

order analysis the maximum growth rate of instability mI  increases steadily with the increase of wave steepness 0 .The 

growth rate is found to be appreciably much higher for dimensionless wind velocity approaching its critical value. Again 

in Figure 3 the wave number  at marginal stability which can be obtained from equation (34) has been plotted against 

wave steepness 0 for some different values of dimensionless wind velocity v. From these figures it is observed that the 

instability regions are shortened with the increase of the absolute value of wind velocity. 

V.     DISCUSSION AND CONCLUSION 

The third order nonlinear evolution equations have been derived by Pierce and Knobloch[14] for two counterpropagating 

capillary gravity wave packets on the surface of water of finite depth.The resulting equations are asymptotically exact and 

nonlocal and generalize the equations derived by Djordjevic andRedekopp [8 ] for counterpropagating waves.Our paper is 

an extension of the evolution equations derived by Pierce and knobloch[14] to one order higher for an infinite depth water 

and in the presence of wind flowing over it.The reason for starting from a fourth order nonlinear evolution equation is 

motivated by the fact, as shown by Dysthe[3]that a fourth order nonlinear evolution equation is a good starting point for 
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making stability analysis of a uniform wave train in deep water.The evolution equations derived by us have been used 

toinvestigate the stability of a uniform standing  wave train under longitudinal perturbations.Instability condition is 

obtained and graphs are plotted  showing maximum growth rate of instability against wave steepness for some  different 

values of dimensionless wind velocity v. From the graphs it is found that in the fourth order   analysis for waves with 

sufficiently small wave numbers the maximum growth rate of instability first increases with the increase of wave 

steepness and then it decreases with the increase of wave   steepness and finally vanishes at some critical value of wave 

steepness beyond which    there is no instability,while in the third order analysis the maximum growth rate of instability 

increases    steadily with the increase of wave steepness  The growth rate of instability is found to be appreciably    much 

higher for dimensionless wind velocity approaching its critical value. Our results show significant deviations from   the 

results obtained from third order nonlinear evolution equations.Graphs are also plotted for the wave number at marginal     

stability against wave steepness for some different values of dimensionless wind velocity v. From the graphs  it is 

observed that the instability regions are shortened with the increase of the absolute value of wind velocity. 

 

Figure 1: Maximum growth rate of instability  mI against wave steepness 0 for some different values of dimensionless 

wind velocity v .Here 0.00129   and  s=0.075 for all the graphs except for two with 0v s   written on the 

graph. ___________ fourth order results --------------------third order results. 

 

Figure 2: Maximum growth rate of instability  mI against wave steepness 0 for some different values of dimensionless wind 

velocity v. Here 0.00129   and  s=0.075 for all the graphs.. ________ fourth order results ---------------third order results. 
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Figure 3  

APPENDIX:   COEFFICIENTS OF THE EVOLUTION EQUATIONS (27) AND (28).} 
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 Nomenclature: 
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,                           

(1)

(1)

(1)

( 1,2,3)

( 1,2,3,4)

( 1,2,3,4,5)

i

i

i

i

i

i










 


 

- coefficients given in the Appendix, 

  - Slowness parameter,  - wave steepness,   - elevation of the air water  interface,  -   frequency, ,  - ratio of 

densities of air to water,   - frequency shift,   -  perturbed frequency at marginal stability. 

 
g  – acceleration due to gravity H  – Hilbert’s transform operator, - wave  number, s  – dimensionless surface tension, 

t –  time, v - air flow velocity, mI       -growth rate of instability   .  
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